Streptolysin O and NAD-Glycohydrolase Prevent Phagolysosome Acidification and Promote Group A Streptococcus Survival in Macrophages
نویسندگان
چکیده
UNLABELLED Group A Streptococcus (GAS, Streptococcus pyogenes) is an ongoing threat to human health as the agent of streptococcal pharyngitis, skin and soft tissue infections, and life-threatening conditions such as necrotizing fasciitis and streptococcal toxic shock syndrome. In animal models of infection, macrophages have been shown to contribute to host defense against GAS infection. However, as GAS can resist killing by macrophages in vitro and induce macrophage cell death, it has been suggested that GAS intracellular survival in macrophages may enable persistent infection. Using isogenic mutants, we now show that the GAS pore-forming toxin streptolysin O (SLO) and its cotoxin NAD-glycohydrolase (NADase) mediate GAS intracellular survival and cytotoxicity for macrophages. Unexpectedly, the two toxins did not inhibit fusion of GAS-containing phagosomes with lysosomes but rather prevented phagolysosome acidification. SLO served two essential functions, poration of the phagolysosomal membrane and translocation of NADase into the macrophage cytosol, both of which were necessary for maximal GAS intracellular survival. Whereas NADase delivery to epithelial cells is mediated by SLO secreted from GAS bound to the cell surface, in macrophages, the source of SLO and NADase is GAS contained within phagolysosomes. We found that transfer of NADase from the phagolysosome to the macrophage cytosol occurs not by simple diffusion through SLO pores but rather by a specific translocation mechanism that requires the N-terminal translocation domain of NADase. These results illuminate the mechanisms through which SLO and NADase enable GAS to defeat macrophage-mediated killing and provide new insight into the virulence of a major human pathogen. IMPORTANCE Macrophages constitute an important element of the innate immune response to mucosal pathogens. They ingest and kill microbes by phagocytosis and secrete inflammatory cytokines to recruit and activate other effector cells. Group A Streptococcus (GAS, Streptococcus pyogenes), an important cause of pharyngitis and invasive infections, has been shown to resist killing by macrophages. We find that GAS resistance to macrophage killing depends on the GAS pore-forming toxin streptolysin O (SLO) and its cotoxin NAD-glycohydrolase (NADase). GAS bacteria are internalized by macrophage phagocytosis but resist killing by secreting SLO, which damages the phagolysosome membrane, prevents phagolysosome acidification, and translocates NADase from the phagolysosome into the macrophage cytosol. NADase augments SLO-mediated cytotoxicity by depleting cellular energy stores. These findings may explain the nearly universal production of SLO by GAS clinical isolates and the association of NADase with the global spread of a GAS clone implicated in invasive infections.
منابع مشابه
Streptolysin O and its Co-Toxin NAD-glycohydrolase Protect Group A Streptococcus from Xenophagic Killing
Group A Streptococcus (Streptococcus pyogenes or GAS) causes pharyngitis, severe invasive infections, and the post-infectious syndromes of glomerulonephritis and rheumatic fever. GAS can be internalized and killed by epithelial cells in vitro, a process that may contribute to local innate defense against pharyngeal infection. Secretion of the pore-forming toxin streptolysin O (SLO) by GAS has b...
متن کاملAutonomous expression of the slo gene of the bicistronic nga-slo operon of Streptococcus pyogenes.
A recent model for cytolysin-mediated translocation in Streptococcus pyogenes proposes that NAD-glycohydrolase is translocated through streptolysin O-generated pores into a host cell (J. Madden, N. Ruiz, and M. Caparon, Cell 104:143-152, 2001). This model also assumes that the NAD-glycohydrolase (nga) and streptolysin O (slo) genes that code for these products are organized in an operon-like st...
متن کاملIdentity of streptolysin-O and NAD-glycohydrolase (EC 3.2.2.5).
The homogeneity of purified NAD-glycohydrolase (EC 3.2.2.5) from Group C streptococci was demonstrated by analytical ultracentrifugation, disc electrophoresis and immunochemical analysis. Together with earlier characterization procedures the data show that the enzyme is homogenous in molecular seize, molecular form and electrophoretic charge. In addition, the enzyme has been shown to possess st...
متن کاملIdentity of Streptolysin - 0 and NAD - Glycohydrolase
The homogeneity of purified NAD-glycohydrolase (EC 3.2.2.5) from Group C streptococci was demonstrated by analytical ultracentrifugation, disc electrophoresis and immunochemical analysis. Together with earlier characterization procedures the data show that the enzyme is homogenous in molecular seize, molecular form and electrophoretic charge. In addition, the enzyme has been shown to possess st...
متن کاملNAD+-Glycohydrolase Promotes Intracellular Survival of Group A Streptococcus
A global increase in invasive infections due to group A Streptococcus (S. pyogenes or GAS) has been observed since the 1980s, associated with emergence of a clonal group of strains of the M1T1 serotype. Among other virulence attributes, the M1T1 clone secretes NAD+-glycohydrolase (NADase). When GAS binds to epithelial cells in vitro, NADase is translocated into the cytosol in a process mediated...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 5 شماره
صفحات -
تاریخ انتشار 2014